
Clean Architecture
with ASP.NET Core

STEVE SMITH

ARDALIS.COM | @ARDALIS | STEVE@DEVIQ.COM

DEVIQ.COM

mailto:steve@deviq.com

Learn More After Today
1) Pluralsight

◦ N-Tier Apps with C# http://bit.ly/PS-NTier1

◦ Domain-Driven Design Fundamentals http://bit.ly/ddd-fundamentals

2) DevIQ
◦ ASP.NET Core Quick Start http://aspnetcorequickstart.com

3) Microsoft FREE eBook/Sample App
◦ eShopOnWeb eCommerce Sample https://ardalis.com/architecture-ebook

4) Contact me for mentoring/training for your company/team

http://bit.ly/PS-NTier1
http://bit.ly/ddd-fundamentals
http://aspnetcorequickstart.com/
https://ardalis.com/architecture-ebook

Questions
HOPEFULLY YOU’LL KNOW THE ANSWERS WHEN WE’RE DONE

Why do we separate applications into multiple
projects?

What are some principles we can apply when
organizing our software modules?

How does the organization of our application’s
solution impact coupling?

What problems result from certain common
approaches?

How does Clean Architecture address these
problems?

Oh yeah, and isn’t ASP.NET Core pretty cool?
:)

Principles
A BIT OF GUIDANCE

Separation of Concerns
Avoid mixing different code responsibilities in the
same (method | class | project)

The Big Three™

Data Access

Business Rules and Domain Model

User Interface

Single Responsibility
Works in tandem with Separation of Concerns

Classes should focus on a single responsibility – a
single reason to change.

Following Don’t Repeat Yourself…
Refactor repetitive code into functions

Group functions into cohesive classes

Group classes into folders and namespaces by
 Responsibility

 Level of abstraction

 Etc.

 Further group class folders into projects

Invert (and inject) Dependencies
Both high level classes and implementation-detail classes should

depend on abstractions (interfaces).

Classes should follow Explicit Dependencies Principle:
Request all dependencies via their constructor.

Corollary
 Abstractions/interfaces must be defined somewhere accessible by:

 Low level implementation services

 High level business services

 User interface entry points

Make the right thing easy
and the wrong thing hard.
UI classes shouldn’t depend directly on infrastructure classes
◦ How can we structure our solution to help enforce this?

Business/domain classes shouldn’t depend directly on infrastructure classes
◦ How can our solution design help?

Repetition of (query logic, validation logic, policies, error handling, anything) is a
problem
◦ What patterns can we apply to make avoiding repetition easier than

copy/pasting?

“Classic” N-Tier
Architecture
OR N-LAYER

Source: MSDN Website, 2001

N-Tier Benefits

Code Reuse
Team

Segmentation

Better
Maintainability

(slightly)
Looser

Coupling

N-Tier Drawbacks

Transitive
Dependencies

(some)

Complexity

(still)

Tight

Coupling

Transitive Dependencies

DB

Data Access
Layer

Business Logic
Layer

User Interface
Layer

Everything
Depends on the database

Domain-Centric Design
AND THE CLEAN ARCHITECTURE

Domain Model
Not just “business logic”

A model of the problem space composed of Entities, Interfaces, Services, and more.

Interfaces define contracts for working with domain objects

Everything in the application (including infrastructure and data access) depends on these
interfaces and domain objects

Clean Architecture

Onion Architecture
Hexagonal Architecture

Ports and Adapters

Clean Architecture “Rules”
The Application Core contains the Domain Model

All projects depend on the Core project; dependencies point inward toward this core

Inner projects define interfaces; outer projects implement them

Avoid direct dependency on Infrastructure project (except from Integration tests)

Clean Architecture Features
Framework Independent.

◦ You can use this architecture with ASP.NET (Core), Java, Python, etc. It doesn’t rely on any software
library or proprietary codebase.

Database Independent
◦ The vast majority of the code has no knowledge of what database, if any, might be used by the

application. Often, this knowledge will exist in a single class, in a single project that no other project
references.

UI Independent
◦ Only the UI project cares about the UI. The rest of the system is UI-agnostic.

Testable
◦ Apps built using this approach, and especially the core domain model and its business rules, are

extremely testable.

Refactoring to a Clean Architecture
Best to start from a properly organized solution

◦ See http://github.com/ardalis/CleanArchitecture

Next-best: Start from a single project

Most difficult: Large, existing investment in multi-layer architecture without abstractions or DI

http://github.com/ardalis/CleanArchitecture

The Core Project
Minimal dependencies – none on Infrastructure.

What Goes in Core:

Interfaces

Entities Value Objects Aggregates

Domain
Services

Domain Events

Exceptions

Specifications

Event Handlers

The Infrastructure Project
All dependencies on out-of-process resources.

What Goes in Infrastructure:

Repositories
EF (Core)

DbContext

Web API
Clients

File System
Accessors

Email/SMS
Sending

Logging
Adapters

System Clock

Other
Services

Cached
Repositories

Interfaces

The Web Project
All dependencies on out-of-process resources.

What Goes in Web:

Controllers Views

ViewModels

Filters Binders

Other Services

Razor
Pages

ApiModels BindingModels

Tag/Html
Helpers

Or

Interfaces

Sharing Between Solutions:
Shared Kernel
Common Types May Be Shared Between Solutions. Will be referenced by Core project(s).

Ideally distributed as Nuget Packages.

What Goes in Shared Kernel:

Base Entity
Base Domain

Event
Base

Specification

Common
Exceptions

Common
Interfaces

Common Auth
e.g. User class

Common DI
Common
Logging

Common
Guard Clauses

Guard Clauses?
Simple checks for input that use common rules and exceptions.

Nuget Package: Ardalis.GuardClauses (https://github.com/ardalis/GuardClauses)

Example:

public void ProcessOrder(Order order)

{

Guard.Against.Null(order, nameof(order));

// process order here

}

https://github.com/ardalis/GuardClauses

Solution Structure – Clean Architecture

Web

Core

Infrastructure

Shared Kernel

Unit Tests

Functional
Tests

Integration
Tests

Typical (Basic) Folder Structure

What belongs in actions/handlers?
Controller Actions or Page Handlers should:

1) Accept task-specific types (ViewModel, ApiModel, BindingModel)

2) Perform and handle model validation (ideally w/filters)

3) “Do Work” (More on this in a moment)

4) Create any model type required for response (ViewModel, ApiModel, etc.)

5) Return an appropriate Result type (View, Page, Ok, NotFound, etc.)

“Do Work” – Option One
Repositories and Entities

1) Get entity from an injected Repository

2) Work with the entity and its methods.

3) Update the entity’s state using the Repository

Great for simple operations

Great for CRUD work

Requires mapping between web models and domain model within controller

.

“Do Work” – Option Two
Work with an application service.

1) Pass ApiModel types to service

2) Service internally works with repositories and domain model types.

3) Service returns a web model type

Better for more complex operations

Application Service is responsible for mapping between web models and domain model.

Keeps controllers lightweight, and with fewer injected dependencies.

“Do Work” – Option Three
Work with commands and a tool like Mediatr.

1) Use ApiModel types that represent commands (e.g. RegisterUser)

2) Send model-bound instance of command to handler using _mediator.Send()

No need to inject separate services to different controllers – Mediatr becomes only dependency.

Code Walkthrough

Resources
Online Courses (Pluralsight and DevIQ)

• SOLID Principles of OO Design http://bit.ly/SOLID-OOP

• N-Tier Architecture in C# http://bit.ly/PS-NTier1 and http://bit.ly/PS-NTier2

• DDD Fundamentals http://bit.ly/ddd-fundamentals

• ASP.NET Core Quick Start http://aspnetcorequickstart.com/ DEVINTFALL17 20% OFF!

• Weekly Dev Tips Podcast http://www.weeklydevtips.com/

• Microsoft Architecture eBook/sample http://aka.ms/WebAppArchitecture

http://bit.ly/SOLID-OOP
http://bit.ly/PS-NTier1
http://bit.ly/PS-NTier2
http://bit.ly/ddd-fundamentals
http://aspnetcorequickstart.com/
http://www.weeklydevtips.com/
http://aka.ms/WebAppArchitecture

