
Web API Best Practices
STEVE SMITH

ARDALIS.COM | @ARDALIS | STEVE@DEVIQ.COM

DEVIQ.COM

mailto:steve@deviq.com

Learn More After Today
1) DevIQ
◦ ASP.NET Core Quick Start http://aspnetcorequickstart.com

2) Microsoft FREE eBook/Sample App
◦ eShopOnWeb eCommerce Sample https://ardalis.com/architecture-ebook

3) Weekly Dev Tips Podcast / Newsletter
◦ http://ardalis.com/tips

4) Contact me for mentoring/training for your company/team
◦ http://ardalis.com

DEVINTFALL17 20% OFF!

http://aspnetcorequickstart.com/
https://ardalis.com/architecture-ebook
http://ardalis.com/tips
http://ardalis.com/

Web API Design

Representational State Transfer (REST)
“An architectural style for building distributed systems based on hypermedia”

Open standards-based

Technology-agnostic

Client issues a request to a URI that represents a resource;
◦ Request verb that indicates the operation to perform on the resource.

◦ Request body includes the data required for the operation.

REST-based APIs are stateless; each request may be handled by a different server-side resource

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design

URI Design Considerations
URI values should correspond to nouns

◦ E.g. /customers, /authors, /orders

URI values should typically be plural (when referring to collections)
◦ Again, /customers, /authors, /orders

Requests for individual resources should append an identifier:
◦ Example: /customers/1, /orders/00234

Principle of Least Astonishment
Try not to surprise your client with how your API works!

Keep it SIMPLE

Keep it CONSISTENT

Don’t Expose Business/Data Model
Avoid coupling your Web API directly to your data model

API design, including URIs, may not may 1:1 to domain objects or database tables.

Example:

POST /orders

May map to a NewOrderRequest on the server that triggers processing payment, checking
inventory, sending notifications, etc.

Or it could just insert a record in the Orders table.

It should be able to do either without the API changing.

Use a standard URI structure for
subcollections
For performance or other reasons, might not return full object tree with root-level request:

GET /customers/1

{

“id”:”1”,

“name”: “Steve Smith”

}

To get the customer’s orders:

GET /customers/1/orders

[{“id”:”123”,”customerId”:”1”, …}, {“id”:”234”,”customerId”:”1”, …}]

Avoid Deeply Nested URI Structures
OK

/customers

/customers/1

/customers/1/orders

TOO MUCH

/customers/1/orders/123 (instead: /orders/123)

/customers/1/orders/123/items/1/products/2 (instead: /products/2)

Hypertext as the Engine of Application State
(HATEOAS)
Less commonly implemented aspect of REST approach

Currently no standards or specifications defining implementation

Basic idea: Each response includes links defining available requests on a given resource

Example:

GET /customers/1

Response includes customer data, as well as links to:

Update the customer Delete the customer List customer orders

List customer addresses Add an address Add an order

Standard Verbs and Behaviors
GET Fetch a resource (or collection of resources)

PUT Update a resource.

POST Create a new resource.

DELETE Delete a resource.

Safe and Idempotent API Requests
Safe requests are requests that do not change resources, and which can be made repeatedly
without impact. Think of safe requests as read-only operations.

An idempotent HTTP method can be called multiple times without changing the expected
response.

Are these the same?

HTTP Verb Idempotency/Safety
VERB Idempotent? Safe?

GET Yes Yes

PUT Yes No

POST No No

DELETE* Yes No

*Decide if a DELETE for a missing id should return a 404 or not. If so, then it won’t be Idempotent.

http://restcookbook.com/HTTP%20Methods/idempotency/

Web API
Implementation

Use Model Validation
Always check if Model.IsValid before performing unsafe operations

Use Filters To Represent Policies
Validate Model State using a filter (globally, per-controller, or per-action)

Use Proper HTTP Status Codes as Results
200 OK Request was successful; body has response.

201 OK POST or PUT was successful; body has latest representation.

204 OK DELETE was successful; resource was deleted.

400 BAD REQUEST The request was invalid or cannot otherwise be served.

401 UNAUTHORIZED Authorization failed or authentication details not supplied.

404 NOT FOUND The URI requested or the resource requested doesn’t exist.

500 Internal Server Error Something very bad happened. Unhandled exceptions lead to this.

Prefer NotFound to
NullReferenceException

Prefer NotFound to
NullReferenceException

Use a filter to confirm existence

Avoid Duplicating Data within Requests
Don’t ask for an ID in the route and also in the BindingModel

◦ Unless you’re going to allow updates to a resource’s ID!

Which value should you use? How do you decide?
◦ Best to use a model type that doesn’t include the ID if it’s redundant

Use DTOs Appropriately
Avoid using domain objects or data entities as your API inputs or outputs.

◦ Doing so exposes your app’s internal state and can be a security risk

Be careful to avoid creating DTO types that inadvertently reference non-DTO types.
◦ Look for using statements in your DTO files that shouldn’t be there

If specifying ID on DTOs, may not make sense to use for new object requests (POSTs)
◦ Consider having separate NewResourceDTO and ResourceDTO types

◦ ResourceDTO can inherit from NewResourceDTO and simply add the Id property

Non-DTOs May Expose Sensitive Data

Post-Redirect-Get (PRG) Pattern
Overview

◦ Client POSTs to Server

◦ Server performs requested operation and returns a Redirect (302) to new URI

◦ Client GETs new URI

This pattern is most appropriate to MVC non-API apps.
◦ One of its primary benefits is that it eliminates browser refreshes from reissuing POST commands.

◦ Not generally an issue with Web APIs

REST services should (typically) return the resource in the body of POST commands

What to Return?
Object

◦ Author, Customer, or void

◦ Automatically wrapped in a result (or

Encoding-Specific
◦ return Json(model); // JsonResult

IActionResult
◦ return Ok(model);

◦ return NotFound();

◦ return BadRequest();

Prefer IActionResult;
Support Content Negotiation
Requests can include Accept header specifying content they want/support

Web API will attempt to comply with specified content format

Support JSON (default) and XML:

Add XML Serializers when adding MVC in ConfigureServices:

services.AddMvc()

.AddXmlSerializerFormatters();

Content Negotiation In Action

Content Negotiation In Action

Documentation / Discoverability
Swagger http://swagger.io

Now the OpenAPI Specification

Provide live, runtime documentation of your APIs

Ability to generate client libraries to assist in consuming your API
◦ NSwag - https://github.com/RSuter/NSwag

http://swagger.io/
https://github.com/RSuter/NSwag

Adding Swagger to your Web API
Add Nuget package Swashbuckle.AspNetCore

Add Services in ConfigureServices:

services.AddSwaggerGen(c =>

{

c.SwaggerDoc("v1", new Info { Title = "My API", Version = "v1" });

});

Add Middleware to Configure() (next slide)

Adding Swagger to your Web API (cont.)
public void Configure(IApplicationBuilder app)

{

app.UseSwagger(); // Enable middleware to serve generated Swagger as a JSON
endpoint.

// Enable middleware to serve swagger-ui specifying the Swagger JSON
endpoint.

app.UseSwaggerUI(c =>

{

c.SwaggerEndpoint("/swagger/v1/swagger.json", "My API V1");

});

app.UseMvc();

}

Demo
WORKING WITH SWAGGER

Testing Web APIs

Kinds of Tests
Unit Tests

◦ Test a single unit – typically a method

◦ Only test your code, not infrastructure

◦ Limited usefulness for testing APIs

Integration Tests
◦ Test several methods and/or classes working together

◦ Useful for verifying infrastructure code works correctly

Functional Tests
◦ Test full application stack

◦ Slowest, often most brittle, but provide greatest confidence a particular user scenario works fully

Test APIs with TestServer
Install Microsoft.AspNetCore.TestHost Nuget Package

Configure with WebHostBuilder; use HttpClient to make requests to TestServer instance.

Example Web API Test

Demo
VALIDATING FILTERS PRODUCE SAME RESULTS AS INLINE CODE

Versioning Web APIs

No Versioning
Limit updates to non-destructive wherever possible

Coordinate with clients on breaking changes

Works best with internal APIs

URI Versioning
Example: api.domain.com/v2/customers/1

Previous versions work as before

Results in multiple URIs corresponding to same resource

Can complicate HATEOAS links

Can be unwieldy if API evolves quickly/frequently

Querystring Versioning
Example: api.domain.com/customers/1?ver=2

Previous versions work as before (default to 1 if omitted)

Can complicate HATEOAS links

Can be unwieldy if API evolves quickly/frequently

Header Versioning
Example: GET api.domain.com/customers/1
Version-Header: 2

Previous versions work as before (default to 1 if omitted)

HATEOAS links must use same header

Can be unwieldy if API evolves quickly/frequently

Media Type Versioning
Example: GET api.domain.com/customers/1
Accept: vnd.domain.v2+json

Response includes header indicating version provided

Previous versions work as before (default to 1 if omitted)

Works well with HATEOAS links (can include MIME types)

Versioning Considerations
Consider performance impact, especially for web server and proxy server caching.

◦ Header and Media Type versioning is less cache friendly than other techniques

Consider whether you will version your entire API (simplest) or resource by resource (generally
not recommended).

Avoid making breaking changes to your API as much as possible. No versioning option is
without its problems.

Securing Web APIs

Use HTTPS
(seriously, just use it)

Windows Auth
Simplest

Well-known

Only works on Windows and within an intranet.

IdentityServer 4
An OpenID Connect and OAuth 2.0 framework for ASP.NET Core 2.

Separate Authentication Service

Single Sign-On Support

Access Control for APIs, including tokens for:
◦ Server-to-Server clients

◦ Web clients and SPAs

◦ Native/Mobile apps

Free, Open Source

Learn more: http://docs.identityserver.io/en/release/

http://docs.identityserver.io/en/release/

Web Tokens (JWT)
Roll your own using available packages:

<PackageReference Include="Microsoft.AspNetCore.Authentication.JwtBearer" Version="2.0.0" />

<PackageReference Include="System.IdentityModel.Tokens.Jwt" Version="5.1.4" />

Great article on this topic
◦ http://www.blinkingcaret.com/2017/09/06/secure-web-api-in-asp-net-core/

Steps
◦ Authenticate user and issue token. Store in client (local storage for browser).

◦ Add token in header on subsequent requests

◦ Validate token on server using middleware; return 401 if not valid

http://www.blinkingcaret.com/2017/09/06/secure-web-api-in-asp-net-core/

JWT Demo

Resources
Online Courses (Pluralsight and DevIQ)

• SOLID Principles of OO Design http://bit.ly/SOLID-OOP

• N-Tier Architecture in C# http://bit.ly/PS-NTier1 and http://bit.ly/PS-NTier2

• DDD Fundamentals http://bit.ly/ddd-fundamentals

• ASP.NET Core Quick Start http://aspnetcorequickstart.com/ DEVINTFALL17 20% OFF!

Other Resources

• Weekly Dev Tips Podcast http://www.weeklydevtips.com/

• Microsoft Architecture eBook/sample http://aka.ms/WebAppArchitecture

• Securing Web API in ASP.NET Core
• http://www.blinkingcaret.com/2017/09/06/secure-web-api-in-asp-net-core/

http://bit.ly/SOLID-OOP
http://bit.ly/PS-NTier1
http://bit.ly/PS-NTier2
http://bit.ly/ddd-fundamentals
http://aspnetcorequickstart.com/
http://www.weeklydevtips.com/
http://aka.ms/WebAppArchitecture
http://www.blinkingcaret.com/2017/09/06/secure-web-api-in-asp-net-core/

