
Master Your Terraform Deployments 
with Azure DevOps

Jim Counts
jim.counts@solliance.net



© DEVintersection All rights reserved.

Introduction

§ Who am I?
o Cloud/DevOps Architect at Solliance
o Background in C# programming
o Messing around with CI/CD pipelines for ~10 years

§ What to cover
o How Terraform works
o How to adapt Terraform to a deployment pipeline
o How to get out of trouble



© DEVintersection All rights reserved.

Terraform 101

§ Terraform is a tool to 
manage infrastructure as 
code (IaC)

§ IaC can be as simple as a 
collection of scripts

§ Terraform includes a
sophisticated workflow
engine

Plan

Review

Approve

Apply

Code



© DEVintersection All rights reserved.

Terraform 101

§ Terraform uses Hashicorp
Configuration Language 
(HCL)

§ A bit of a cross between
YAML and JSON



© DEVintersection All rights reserved.

Terraform Workflow

§ What is the current state of the environment?
§ What does this code say the environment should be?
§ Here is my plan to get the environment into the desired 

state
§ Should I apply it?
§ Ok, I’m Applying it
§ Save the new current state



© DEVintersection All rights reserved.

Terraform Safety is All About The Plan

§ If the plan is safe, the 
deployment is safe

§ Regarding safety, 
Terraform has no 
intelligence

§ Terraform asks for 
approval before making 
changes

§ Your responsibility to 
review the plan and 
provide approval



© DEVintersection All rights reserved.

Infrastructure to Deploy

§ A virtual machine
o An Azure resource group
o A virtual network
o A subnet
o A public IP
o A network security group that allows SSH
o A network interface



© DEVintersection All rights reserved.

Demo: Terraform In Action



© DEVintersection All rights reserved.

Terraform Pipelines

§ Make Terraform non-interactive
§ Without Sacrificing Safety
§ Ways to make pipelines safe

o Feature Flags
o Unit Tests
o Static analysis
o Very few options like this for IaC



© DEVintersection All rights reserved.

Prerequisite: Use Remote State

§ Build agents are ephemeral
§ To avoid losing state, we must store it off the agent
§ Extremely sensitive secrets
§ Azure Storage Account Backend

o Encrypted at Rest, Role Based Access Control, Locking, Geo Replication, 
Soft deletes, Storage Account Firewall, Advanced Threat Protection, 
Logging and Monitoring, HTTPs Only Access



© DEVintersection All rights reserved.

Demo: Setup Remote State



© DEVintersection All rights reserved.

Terraform Pipelines Require Explicit Plans

§ Explicit plan files are the 
critical design feature for 
automation

§ Safety—You can review an
explicit plan

§ Approval—Invoking 
Terraform with a plan file is 
the same as approving the 
plan

Plan

Review

Approve

Apply

Code



© DEVintersection All rights reserved.

Creating a plan file

§ Use the plan command
§ Terraform’s “plan” is just 

like apply… 
§ Except it makes no 

attempt to change 
infrastructure

§ Use the “-out” 
parameter, to save the 
plan to a file



© DEVintersection All rights reserved.

Explicit Plan Files Are Approved Plans

§ You must explicitly create the plan
§ You must explicitly supply the plan to Terraform 
§ These two explicit actions add up to an approval
§ Terraform skips the interactive prompt when using an 

explicit plan file



© DEVintersection All rights reserved.

Plan

Review

Approve

Apply

Code

Plan Review vs Code Review

§ Code Reviews are important, but are up to 
interpretation

§ The plan is the final word on what Terraform will try 
to do

§ Terraform wins every* disagreement
§ Actually… Azure has the final word.



© DEVintersection All rights reserved.

Azure DevOps Build Stage

§ Build Stages 
create artifacts

§ Terraform Build 
Stages Produce 
Plan Files

§ Steps
§ Download Terraform
§ Login
§ Run terraform init
§ Run terraform plan
§ Create build artifact including plan
§ Publish artifact for later use



© DEVintersection All rights reserved.

Demo: Terraform Build Stage



© DEVintersection All rights reserved.

Azure DevOps Deploy Stage

§ Deploy stages 
consume/deploy build 
artifacts

§ Terraform deploy stages 
apply explicit plan files 
created by Terraform 
build stages

§ Steps
§ Download Terraform
§ Extract artifacts
§ Login
§ Run terraform apply



© DEVintersection All rights reserved.

Configure Environment to Support Approvals

§ Manual Approval Checks Force Deployment to Pause



© DEVintersection All rights reserved.

Reviewing the Plan

§ Explicit plan is not human readable
§ Terraform ”show” can produce human 

readable output
§ Much quicker to look at the build log



© DEVintersection All rights reserved.

Demo: Terraform Deploy Stage



© DEVintersection All rights reserved.

Troubleshooting

§ Targeting
terraform plan \

-destroy \
-target=azurerm_network_interface.nic \
-out /tmp/tfplan

§ State editing (rm, mv, pull, push)
o terraform state rm azurerm_network_interface.nic
o Careful with pull and push!



© DEVintersection All rights reserved.

Troubleshooting

§ Importing
terraform import \

azurerm_network_interface.nic \
/subscriptions/…/Microsoft.Network/networkInterfaces/myNIC

§ Infrastructure Editing
az network nic delete \

--resource-group myTFResourceGroup \
--name myNIC



© DEVintersection All rights reserved.

Troubleshooting

§ State Rollback



© DEVintersection All rights reserved.

§ Blog: http://jamesrcounts.com/2019/10/14/azdo-safe-terraform-
pipelines.html

§ Code: https://github.com/jamesrcounts/terraform-getting-started-
azure

http://jamesrcounts.com/2019/10/14/azdo-safe-terraform-pipelines.html
https://github.com/jamesrcounts/terraform-getting-started-azure


© DEVintersection All rights reserved.

Please use EventsXD to fill out a session evaluation.

Thank you!


